

Self Cleaning HEPA Filtration In Arduous Environments

ISNATT June 2012

Adam Swain (and Chris Chadwick)
Porvair Filtration Group

HEPA Filtration

- Established for many decades as a reliable means of controlling environmental release to a known degree
- Limited in application by chemistry, temperature, solids load and radioactivity
- Results in expensive to dispose of secondary or tertiary waste streams
- A small amount of dust results in a large volume for disposal

HEPA Filtration in Arduous Environments

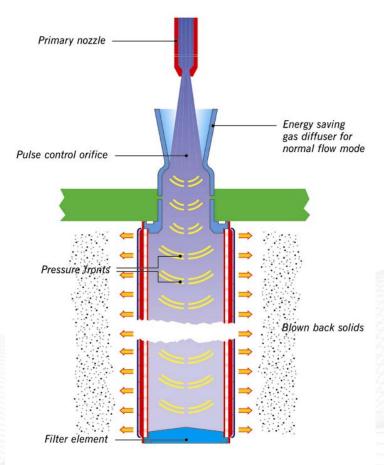
- Arduous Environments are here defined as
 - High Temperature (400 Celsius max [750 Fahrenheit] in oxidising flows)
 - High solids loads
 - High activity situations
 - Aggressive chemical streams
- 316L stainless filtration media meets all these needs (dependent upon chemical resistance
- Removes need to dispose of secondary or tertiary waste stream
- Returns to the user the small amount of dust which would other wise result in a large volume for disposal

Self Cleaning HEPA Filtration

- Pulsed Jet Filter Cleaning will return the collected solids to the user for removal and disposal
- Safe and reliable cleaning mechanism
- Industrially proven
- Systems can be adapted to provide remote maintenance

Self Cleaning HEPA Filtration

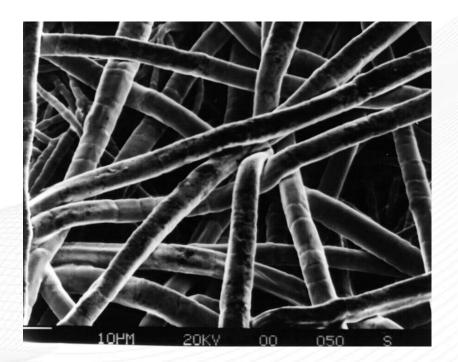
- Limited to 400 Celsius [750 Fahrenheit] in Oxidising Environments (up to 500 Celsius [930 Fahrenheit] in reducing atmospheres)
- Substantial DP penalty (possibly as high as 25 mbar [10" W.G] depending on solids load and cleaning cycle time)
- Equipment size and cost can be substantial
- Limited to atmospheres which are 316L compatible.



Pulsed Jet HEPA Filtration

- Will maintain 99.97% + at 0.3 micron release levels in the long term
- Increases the range of applications within reach of direct HEPA filtration (removing the need for scrubbers etc.)
- Can simplify process design
- Dust return mechanism can be designed to meet the specific needs of the user for disposal in a controlled fashion

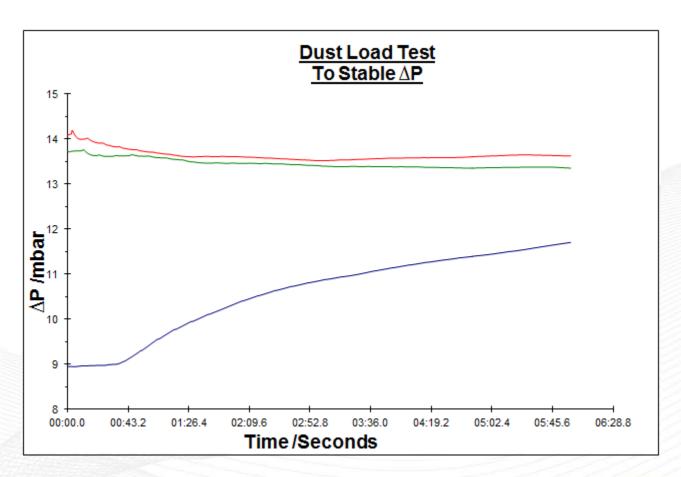
Pulsed Jet Filter Cleaning


Pulsed Jet Filter Cleaning;

- Cleaning pulse can be 0.25 second or less
- Cleans In-situ
- Doesn't Interrupt Process flow
- Returns Dust To the User
- Minimising Pressure Loss
- Operates at a stable DP Plateau
- Proven
- Reliable

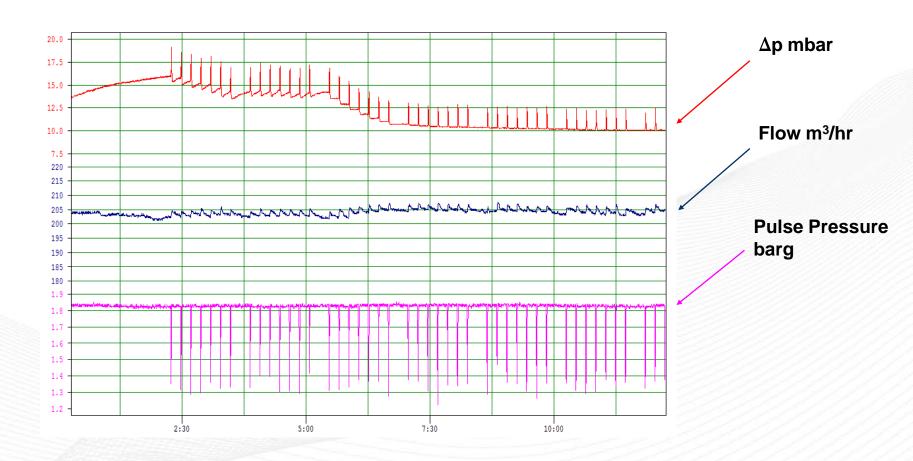
Pulsed Jet HEPA Filtration Filter Medium (Sintered Metal Fibre

- Random Laid (Non Woven) Matrix
- Metal Fibres range 1-30um
- Sinter-bonded No Binders
- Pleatable
- High Porosity 60-80%

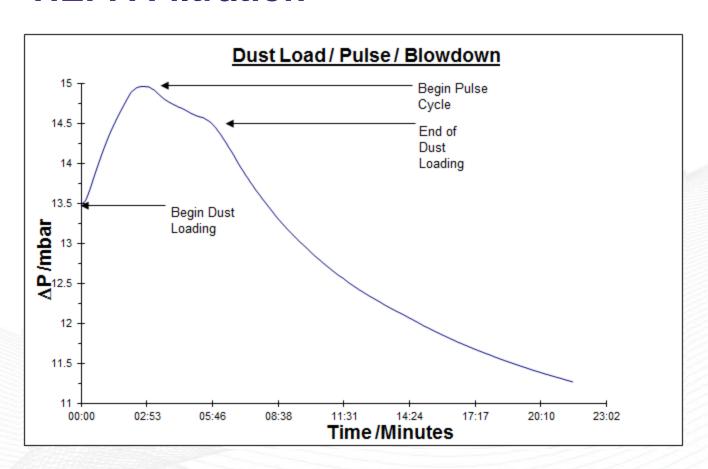

Pulsed Jet HEPA Filtration Filter Medium (Sintered Metal Fibre)

Course Fibre Support Structure Flow

Fine Fibre Structure - Surface Filtration



Pulsed Jet Filtration



HEPA Filtration

HEPA Filtration

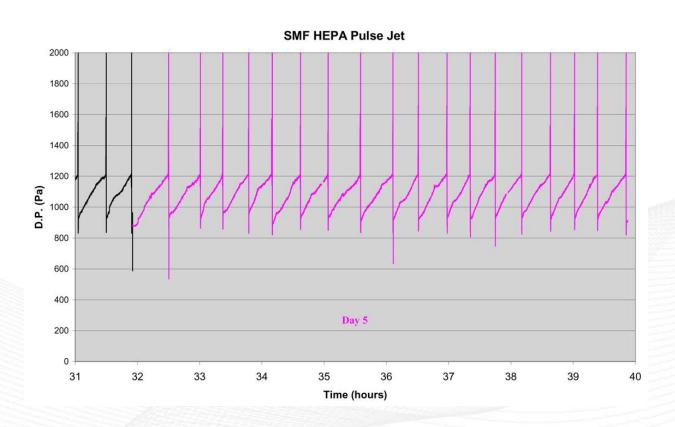
Self Cleaning HEPA Filtration Proof of Concept Testing

- Porvair Filtration, building upon it's long term experience of Pulsed Jet self cleaning filters in the Nuclear Industry, developed the technology to provide reliable HEPA grade separation in gas streams
- The following is an abstract of some of that work, on test bed Pulsed Jet HEPA filter system at our UK research facility using high dust loading at ~ ambient T&P
- The results noted are at the pilot scale, but we know from our corporate experience that scale up is both possible and reliable

Self Cleaning HEPA Filtration Proof of Concept Test Conditions

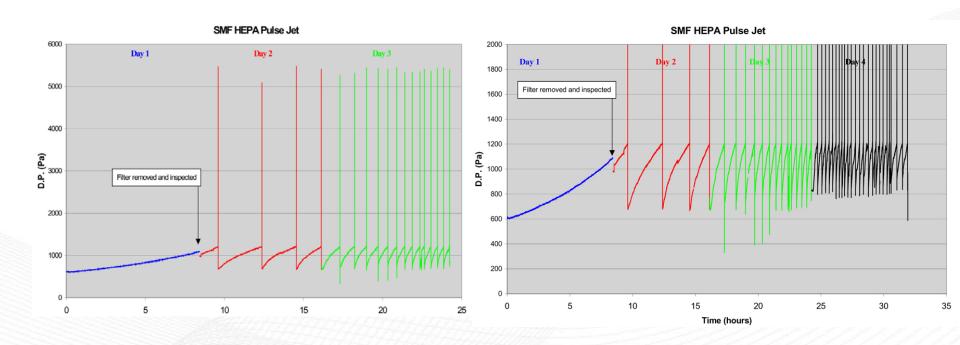
- Filter element filtration area 0.3 m² (3.4 ft²)
- Target efficiency 99.97% @ 0.3 microns (actual DOP tested efficiency (99.992% @ 0.3 microns)
- Test simulant used was Iron Oxide in the range 0 to 5 microns
- Air flow 32.4 m³/hr (19.2 cfm)
- Dust rate 108.5 g/hr
- Clean DP 6.2 mbar [2.5" W.G]
- Initial DP set point to start cleaning cycle 12.1 mbar [4.8" W.G]
- Adjusted DP set point to start cleaning cycle 18.1 mbar [7.3" W.G] (raised to see if increased DP would affect cleanability
- MPPS also measured (see certificates on last slide)

The Test Programme

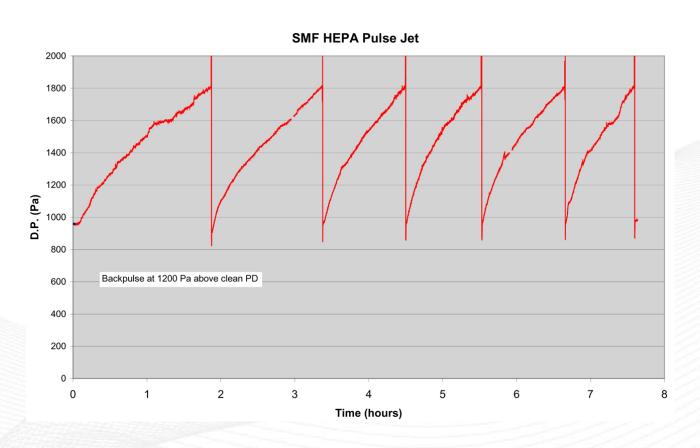


The rig consisted of;

- Air Flow (Fan and Ducting)
- The Filter Vessel
- The Pulsed Jet Cleaning System
- The Dust Injection System
- Dust Recovery and Measurement
- Instrumentation
- Data Logging


The Results

The Test Programme
Proved That Reliable
Pulsed Jet, Self Cleaning
HEPA Filtration Could Be
Achieved Under High
Dust load Conditions
Using a Fine Test Dust



Evolution of the Stable Regime

Recovery Regime at Higher Initiation Pressure

Conclusions

- Efficiency Tests prove HEPA Efficiency Before and After the Test Programme
- DP data Proves That Stable Long Term Operation is Possible
- Subsequent Work On MPPS Shows Actual Efficiency at MPPS for the Filter Medium is better than 99.98% @ 0.14/0.16 microns
- Work is on-going
- Concept is proven
- Self Cleaning metallic filtration for arduous environments is an industrial reality.

MPPS

TEST REPORT

Performed for: Microfiltrex Location: Fareham Contact: Chris Chadwick IBR JN: 9005MK-A

Test Method: EN1822-5 (2001) HEPA filter efficiency with MPPS Fluid: Air

Fluid: All Instrumentation: Grimm 5.402 CPC CNTR-08A Flow Rait: 3cm/sec Conditions: Tempor 2.1 5°C. RH-50.6% Barcmetric Pressure-975/mbar Contaminant: Monodispense later spheres from Duke Scientific Description of Samples: Double thickness metallic filter discs 69/mm diameter Data Rea: 21.01.090 Sample Source: Microfiftrex

Filter	NET Diff. Pres. Inches of H20	Port	Particles/120 cm3 (in um)						
			0.09	0.1	0.12	0.14	0.16	0.17	
Sample 1	3.7	Upstream Downstream Efficiency	849182 39.7 99.9953	762349 54.9 99.9928	762073 67.4 99.9912	832475 75 99.9910	753976 76 99.9899	718264 68.2 99.9905	
Sample 2	5.0	Upstream Downstream					660611 76.9		

Notice: These data relate only to the samples tested. This report may be copied only in its entirety. pg 1/1 Performed By: CP Data Location: CP-05

Reviewed By:
Susan H. Goldsmith, Director of Technical Services
IBR (UK) Ltd. 4 Davy Avenue, Knowihili, Milton Keynes, MKS 8NL, UK. Tel. +44 (0)1908 528800

Template UK016 Rev3

TEST REPORT

Performed for: Microfiltrex IBR JN: 9005MK-B

Location: Fareham Contact: Chris Chadwick

Date: 25/01/2009

Test Method: EN1822-5 (2001) HEPA filter efficiency with MPPS Fluid: Air

Instrumentation: Grimm 5.402 CPC CNTR-06A Flow Rate: 10cm/sec

Conditions: Temp: 21.5°C RH:50.6% BP:975mbar

Contaminant: Monodisperse latex spheres from Duke Scientific Description of Samples: Double thickness metallic filter discs 89mm diameter

Date Rec: 21/01/09 Sample Source: Microfiltrex

Filter	NET Diff. Pres. mbar	Port	Particles/120 cm3 (in um)					
			0.09	0.1	0.12	0.14	0.16	
Sample 1	15.7	Upstream Downstream Efficiency	850783 6.2 99.9993	860149 13.3 99.9985	748730 19 99.9975	856872 24.8 99.9971	726335 15.4 99.9979	
Sample 2	15.2	Upstream Downstream Efficiency				636396 10.9 99.9983		

Notice: These data relate only to the samples tested. This report may be copied only in its entirety. Performed By: CP Data Location: CP-05

Reviewed By:

Susan H. Goldsmith, Director of Technical Services

We will be the proper MK5 8

IBR (UK) Ltd. 4 Davy Avenue, Knowlhill, Milton Keynes, MK5 8NL, UK. Tel. +44 (0)1908 528800

Template UK016 Rev3